IL-23 induces receptor activator of NF-kappaB ligand expression on CD4+ T cells and promotes osteoclastogenesis in an autoimmune arthritis model.
نویسندگان
چکیده
IL-23, a clinically novel cytokine, targets CD4(+) T cells. Recent IL-1Ra(-/-) mouse studies have demonstrated that IL-23 indirectly stimulates the differentiation of osteoclast precursors by enhancing IL-17 release from CD4(+) T cells. IL-17, in turn, stimulates osteoclastogenesis in osteoclast precursor cells. In this study, we found that IL-23 up-regulates receptor activator of NF-kappaB ligand expression by CD4(+) T cells, and thus contributes to osteoclastogenesis. This indirect pathway is mediated by NF-kappaB and STAT3. We have also demonstrated that IL-23 can influence osteoclastogenesis positively under the special conditions in the IL-1-dominant milieu of IL-1Ra(-/-) mice. We propose that IL-23-enhanced osteoclastogenesis is mediated mainly by CD4(+) T cells. The results of this study show that IL-23 is a promising therapeutic target for the treatment of arthritis-associated bone destruction.
منابع مشابه
Interleukin-17A upregulates receptor activator of NF-κB on osteoclast precursors
INTRODUCTION The interaction between the immune and skeletal systems is evidenced by the bone loss observed in autoimmune diseases such as rheumatoid arthritis. In this paper we describe a new mechanism by which the immune cytokine IL-17A directly affects osteoclastogenesis. METHODS Human CD14+ cells were isolated from healthy donors, cultured on dentine slices and coverslips and stimulated w...
متن کاملA positive feedback loop of IL-21 signaling provoked by homeostatic CD4+CD25- T cell expansion is essential for the development of arthritis in autoimmune K/BxN mice.
Rheumatoid arthritis is a joint-specific autoimmune inflammatory disease of unknown etiology. The K/BxN mouse is a model of rheumatoid arthritis that is thought to be mainly due to autoantibody-mediated inflammatory responses. We showed previously that homeostatic proliferation of autoreactive CD4(+) T cells is required for disease initiation in the K/BxN mice. In this study, we show that the h...
متن کاملSignaling crosstalk between RANKL and interferons in osteoclast differentiation
Regulation of osteoclast differentiation is an aspect central to the understanding of the pathogenesis and the treatment of bone diseases such as autoimmune arthritis and osteoporosis. In fact, excessive signaling by RANKL (receptor activator of nuclear factor kappaB ligand), a member of the tumor necrosis factor (TNF) family essential for osteoclastogenesis, may contribute to such pathological...
متن کاملIL-23 induces human osteoclastogenesis via IL-17 in vitro, and anti-IL-23 antibody attenuates collagen-induced arthritis in rats
This study demonstrates that IL-23 stimulates the differentiation of human osteoclasts from peripheral blood mononuclear cells (PBMC). Furthermore, in vivo blockade of endogenous IL-23 activity by treatment with anti-IL-23 antibody attenuates collagen-induced arthritis in rats by preventing both inflammation and bone destruction. IL-23 induced human osteoclastogenesis in cultures of PBMC in the...
متن کاملNF-κB inhibitor dehydroxymethylepoxyquinomicin suppresses osteoclastogenesis and expression of NFATc1 in mouse arthritis without affecting expression of RANKL, osteoprotegerin or macrophage colony-stimulating factor
Inhibition of NF-kappaB is known to be effective in reducing both inflammation and bone destruction in animal models of arthritis. Our previous study demonstrated that a small cell-permeable NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), suppresses expression of proinflammatory cytokines and ameliorates mouse arthritis. It remained unclear, however, whether DHMEQ directly affects ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 181 2 شماره
صفحات -
تاریخ انتشار 2008